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History

Pionneered by Vapnik and Chervonenkis (1968, 1971), Sauer
(1972), Shelah (1972) as Vapnik-Chevonenkis-Sauer Lemma

Introduced in the west by Valiant (1984) under the name of
“probably approximately correct” (PAC)
— with probability at least 1− δ (probably), any classifier from

hypothesis class/set, if the classifier has low training error, it will

have low generalisation error (approximately correct).

Learnability and the VC dimension by Blumer et al. (1989),
forms the basis of statistical learning theory

Generalisation bounds, (1) SRM, Shawe-Taylor, Bartlett,
Williamson, Anthony, (1998),
(2) Neural Networks, Bartlett (1998).

Soft margin bounds, Cristianini, Shawe-Taylor (2000),
Shawe-Taylor, Cristianini (2002)
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History

Apply Concentration inequalities, Boucheron et al. (2000),
Bousquet, Elisseff (2001)

Rademacher complexity, Koltchinskii, Panchenko (2000),
Kondor, Lafferty (2002), Bartlett, Boucheron, Lugosi (2002),
Bartlett, Mendelson (2002)

PAC-Bayesian Bound proposed by McAllester (1999),
improved by Seeger (2002) in Gaussian processes, applied to
SVMs by Langford, Shawe-Taylor (2002), Tutorial by Langford
(2005), greatly simplified proof by Germain et al. (2009).
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Good books/tutorials

J Shawe-Taylor, N Cristianini’s book “Kernel Methods for
Pattern Analysis”, 2004

V Vapnik’s books “The nature of statistical learning theory”,
1995 and “Statistical learning theory”, 1998

Online course “Learning from the Data”, by Yaser
Abu-Mostafa in Caltech.

Bousquet et al.’s ML summer school tutorial “Introduction to
Statistical Learning Theory”, 2004

· · ·
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Generalisation error

{(x1, y1), · · · , (xn, yn) ∼ P(X ,Y )}1, hypothesis function
g : X→ Y, Y = {−1, 1}.

Generalisation error: error over all possible testing data from P, i.e.
risk w.r.t. zero one loss R(g) = E(x ,y)∼P [1g(x)6=y ].

Training error, i.e. empirical risk w.r.t. zero one loss
Rn(g) = 1

n

∑n
i=1[1g(xi )6=yi ].

1To simplify notation and make the results more general, we don’t use
boldface to distinguish vectors and scalers i.e. x , y ,w can be vectors too.
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Generalisation bounds

Approximation error and estimation error

G

gbayes
g* gn

gbayes = argmin
g

R(g)

g∗ = argmin
g∈G

R(g)

gn = argmin
g∈G

Rn(g)

R(gn)− R(gbayes) = [R(g∗)− R(gbayes)]︸ ︷︷ ︸
approximation error

+ [R(gn)− R(g∗)]︸ ︷︷ ︸
estimation error
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Generalisation bounds

G

gbayes
g* gn

gbayes = argmin
g

R(g)

g∗ = argmin
g∈G

R(g)

gn = argmin
g∈G

Rn(g)

Generalisation bounds:

R(gn) ≤ Rn(gn) + B1(n,G), (1)

R(gn) ≤ R(g∗) + B2(n,G), (2)

R(gn) ≤ R(gbayes) + B3(n,G), (3)

where B(n,G) ≥ 0,
and usually B(n,G)→ 0 as n→ +∞.
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Capacity measure

Capacity/complexity of G ↓⇒ B(n,G) ↓

How to measure the capacity/complexity of G?

Counting the hypotheses in G, i.e. |G |.

Counting all possible outputs of the hypotheses

Ability to fit noise

Divergence of the prior and posterior distributions (over
classifiers)

· · ·
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Counting the hypotheses

(a.k.a Hoeffding’s inequality bound) For training examples
{(x1, y1), · · · , (xn, yn)}, for a finite hypothesis set
G = {g1, · · · , gN}, for any δ ∈ (0, 1), with probability at least
1− δ,

∀g ∈ G,R(g) ≤ Rn(g) +

√
log N + log(1δ )

2n
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Proof (1)– Hoeffding’s inequality

Theorem (Hoeffding)

Let Z1, · · · ,Zn be n i.i.d. random variables with f (Z ) ∈ [a, b]. Then for
all ε > 0, we have

Pr
(∣∣∣1

n

n∑
i=1

f (Zi )− E[f (Z )]
∣∣∣ > ε

)
≤ 2 exp

(
− 2nε2

(b − a)2

)
Let Z = (X ,Y ) and f (Z ) = 1g(X )6=Y , we have

R(g) = E(f (Z )) = E(X ,Y )∼P [1g(X ) 6=Y ]

Rn(g) =
1

n

n∑
i=1

f (Zi ) =
1

n

n∑
i=1

1g(Xi )6=Yi

b = 1, a = 0

⇒ Pr(|R(g)− Rn(g)| > ε) ≤ 2 exp (−2nε2)

Qinfeng (Javen) Shi Lecture 12: Learning Theory



History
Generalisation bounds

Capacity measure

Counting the hypotheses
Counting outputs
Ability to fit noise
Divergence of the prior and posterior distributions

Proof (2) – for a hypothesis

Pr(|R(g)− Rn(g)| > ε) ≤ 2 exp (−2nε2)

Let δ = 2 exp (−2nε2) ⇒ ε =
√

log(2/δ)/2n.

⇒ For training examples {(x1, y1), · · · , (xn, yn)}, and for a
hypothesis g , for any δ ∈ (0, 1) with probability at least 1− δ,

R(g) ≤ Rn(g) +

√
log(2δ )

2n
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Proof (3) – over finite many hypotheses

Let consider a finite hypothesis set G = {g1, · · · , gN}. Union bound

Pr(
N⋃
i=1

Ai ) ≤
N∑
i=1

Pr(Ai )

Pr(|R(g)− Rn(g)| > ε) ≤ 2 exp (−2nε2)⇒

Pr(∃g ∈ G : |R(g)− Rn(g)| > ε) ≤
N∑
i=1

Pr(|R(gi )− Rn(gi )| > ε)

≤ 2N exp (−2nε2)

Let δ = 2N exp (−2nε2), we have, for any δ ∈ (0, 1), with probability at
least 1− δ,

∀g ∈ G,R(g) ≤ Rn(g) +

√
log N + log( 1

δ )

2n
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Counting outputs

What if there are infinite many hypotheses N =∞?
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Counting outputs

What if there are infinite many hypotheses N =∞?

√
log N + log(1δ )

2n
=∞
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Counting outputs

What if there are infinite many hypotheses N =∞?

Observation:

1 For any x , only two possible outputs ( g(x) ∈ {−1,+1});

2 For any n training data at most 2n different outputs of g(x).

What matters is the “expressive power” (Blumer et al.
1986,1989)( e.g. the number of different prediction outputs), not
the cardinality of G.

Qinfeng (Javen) Shi Lecture 12: Learning Theory



History
Generalisation bounds

Capacity measure

Counting the hypotheses
Counting outputs
Ability to fit noise
Divergence of the prior and posterior distributions

Break

Take a break ...
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Growth function

Definition (Growth function)

The growth function (a.k.a Shatter coefficient) of F with n points
is

SF(n) = sup
(z1,··· ,zn)

∣∣∣{(f (z1), · · · , f (zn)
)}

f ∈F

∣∣∣.
i.e. maximum number of ways that n points can be classified by
the hypothesis set F.

Note: g can be a f , and G can be a F.
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Growth function

If no restriction on g , we know

sup
(z1,z2,z3)

∣∣∣{(g(z1), g(z2), g(z3)
)}∣∣∣ = 23

When we restrict g ∈ G,

SG(3) = sup
(z1,z2,z3)

∣∣∣{(g(z1), g(z2), g(z3)
)}

g∈G

∣∣∣.
i.e. counting all possible outputs that G can express.
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Growth function

The growth function SG(3) = 8, if G is the set of linear decision
functions shown in the image below2.

2The image is from http://www.svms.org/vc-dimension/
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Growth function

How about SG(4)?
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Growth function

How about SG(4)?

One g can not classify 4 points above correctly (two gs or a curve
needed), which means SG(4) < 24.
Picture courtesy of wikipedia
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VC dimension (1)

Definition (VC dimension)

The VC dimension (often denoted as h) of a hypothesis set G, is
the largest n such that

SG(n) = 2n.

h = 3 for G being the set of linear decision functions in 2-D.
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VC dimension (2)

Lemma

Let G be a set of functions with finite VC dimension h. Then for
all n ∈ N,

SG(n) ≤
h∑

i=0

(
n

i

)
,

and for all n ≥ h,

SG(n) ≤ (
en

h
)h.
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VC dimension (3)

Theorem (Growth function bound)

For any δ ∈ (0, 1), with probability at least 1− δ, ∀g ∈ G

R(g) ≤ Rn(g) + 2

√
2

log SG(2n) + log(2δ )

n

Thus for all n ≥ h, since SG(n) ≤ ( enh )h, we have

Theorem (VC bound)

For any δ ∈ (0, 1), with probability at least 1− δ, ∀g ∈ G

R(g) ≤ Rn(g) + 2

√
2

h log 2en
h + log(2δ )

n
.
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VC dimension (4)

Assume x ∈ Rd ,Φ(x) ∈ RD (Note D can be +∞).

linear 〈x ,w〉, h = d + 1

polynomial (〈x ,w〉+ 1)p, h =
(d+p−1

p

)
+ 1

Gaussian RBF exp (−‖x−x
′‖2

σ2 ), h = +∞.

Margin γ, h ≤ min{D, d4R2

γ2
e}, where the radius

R2 = maxni=1 〈Φ(xi ),Φ(xi )〉 (assuming data are already
centered)
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Ability to fit noise

Definition (Rademacher complexity)

Given S = {z1, · · · , zn} from a distribution P and a set of
real-valued functions G, the empirical Rademacher complexity of G
is the random variable

R̂n(G,S) = Eσ

[
sup
g∈G

∣∣∣2
n

n∑
i=1

σig(zi )
∣∣∣],

where σ = {σ1, · · · , σn} are independent uniform {±1}-valued
(Rademacher) random variables. The Rademacher complexity of G
is

Rn(G) = ES [R̂n(G, S)] = ESσ

[
sup
g∈G

∣∣∣2
n

n∑
i=1

σig(zi )
∣∣∣]
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First sight

supg∈G

∣∣∣ 2n∑n
i=1 σig(zi )

∣∣∣
measures the best correlation between g ∈ G and random
label (i.e. noise) σi ∼ U({−1,+1}).

ability of G to fit noise.

the smaller, the less chance of detected pattern being spurious

if |G | = 1, Eσ

[
supg∈G

∣∣∣ 2n∑n
i=1 σig(zi )

∣∣∣] = 0.
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Rademacher bound

Theorem (Rademacher)

Fix δ ∈ (0, 1) and let G be a set of functions mapping from Z to
[a, a + 1]. Let S = {zi}ni=1 be drawn i.i.d. from P. Then with
probability at least 1− δ, ∀g ∈ G,

EP [g(z)] ≤ Ê[g(z)] + Rn(G) +

√
ln(2/δ)

2n

≤ Ê[g(z)] + R̂n(G, S) + 3

√
ln(2/δ)

2n
,

where Ê[g(z)] = 1
n

∑n
i=1 g(zi )

Note: R̂n(G, S) is computable whereas Rn(G) is not.
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Properties of empirical Rademacher complexity

Let F,F1, · · · ,Fm and G be classes of real functions. Let
S = {zi}ni=1 i.i.d. from any unknown but fixed P.Then

1 If F ⊆ G, then R̂n(F, S) ≤ R̂n(G, S)

2 For every c ∈ R, R̂n(c F,S) = |c |R̂n(F,S)

3 R̂n(
∑m

i=1 Fi , S) ≤
∑m

i=1 R̂n(Fi , S)

4 For any function h, R̂n(F +h, S) ≤ R̂n(F, S) + 2
√
Ê[h2]/n

5 R̂n(F,S) = R̂n(conv(F), S)

6 If A : R→ R is Lpschitz with constant L > 0 (i.e.
|A(a)−A(a′)| ≤ L|a− a′| for all a, a′ ∈ R), and A(0) = 0,
then R̂n(A ◦F,S) ≤ 2LR̂n(F, S)
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An example

Let S = {(xi , yi )}ni=1 ∼ Pn. yi ∈ {−1,+1}
One form of soft margin binary SVMs is

min
w ,γ,ξ

−γ + C
n∑

i=1

ξi (4)

s.t. yi 〈φ(xi ),w〉 ≥ γ − ξi , ξi ≥ 0, ‖w‖2 = 1

The Rademacher Margin bound (next slide) applies.

R̂n(G,S) is essential, where
G = {−yf (x ; w), f (x ; w) = 〈φ(xi ),w〉 , ‖w‖2 = 1}.
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Rademacher Margin bound

Theorem (Margin)

Fix γ > 0, δ ∈ (0, 1), let G be the class of functions mapping from
X×Y→ R given by g(x , y) = −yf (x), where f is a linear function
in a kernel-defined feature space with norm at most 1. Let
S = {(xi , yi )}ni=1 be drawn i.i.d. from P(X ,Y ) and let
ξi = (γ − yi f (xi ))+. Then with probability at least 1− δ over
sample of size n, we have

EP [1y 6=sgn(f (x))] ≤
1

nγ

n∑
i=1

ξi +
4

nγ

√
tr(K) + 3

√
ln(2/δ)

2n
,

data dependency come through training error and margin

tighter than VC bound ( 4
nγ

√
tr(K) ≤ 4

nγ

√
nR2 ≤ 4

√
R2

nγ2
)
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PAC-bayes bounds

Assume Q̂ is the prior distribution over classifiers g ∈ G and Q is
any (could be the posterior) distribution over the classifiers.

PAC-bayes bounds on:

Gibbs classifier: GQ(x) = g(x), g ∼ Q
risk: R(GQ) = E(x ,y)∼P,g∼Q [1g(x)6=y ]
(McAllester98,99,01,Germain et al. 09)

Average classifier: BQ(x) = sgn[Eg∼Q g(x)]
risk: R(BQ) = E(x ,y)∼P [1EQ [g(x)] 6=y ]
(Langford01, Zhu&Xing09)

Single classifier: g ∈ G.
risk: R(g) = E(x ,y)∼P [1g(x)6=y ] (Langford01,McAllester07)
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Why bounding Gibbs classifier is enough?

PAC-bayes bounds on Gibbs classifier yield the bounds on average
classifier and single classifier.

R(GQ) (original PAC-Bayes bounds)

⇓∵ R(BQ)/2 ≤ R(GQ)

R(BQ) (PAC-Bayes margin bound for boostings)

⇓ via picking a “good” prior Q̂ and posterior Q over g

R(g) (PAC-Bayes margin bound for SVMs)
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PAC-Bayesian bound on Gibbs Classifier (1)

Theorem (Gibbs (McAllester99,03))

For any distribution P, for any set G of the classifiers, any prior
distribution Q̂ of G, any δ ∈ (0, 1], we have

Pr
S∼Pn

{
∀Q on G : R(GQ) ≤ RS(GQ)+√

1

2n − 1

[
KL(Q||Q̂) + ln

1

δ
+ ln n + 2

]}
≥ 1− δ.

where KL(Q||Q̂) = Eg∼Q ln Q(g)

Q̂(g)
is the KL divergence.
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PAC-Bayesian bound on Gibbs Classifier (2)

Theorem (Gibbs (Seeger02 and Langford05))

For any distribution P, for any set G of the classifiers, any prior
distribution Q̂ of G, any δ ∈ (0, 1], we have

Pr
S∼Pn

{
∀Q on G : kl(RS(GQ),R(GQ)) ≤

1

n

[
KL(Q||Q̂) + ln

n + 1

δ

]}
≥ 1− δ.

where

kl(q, p) = q ln
q

p
+ (1− q) ln

1− q

1− p
.
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PAC-Bayesian bound on Gibbs Classifier (3)

Since
kl(q, p) ≥ (q − p)2,

The theorem Gibbs (Seeger02 and Langford05) yields

Pr
S∼Pn

{
∀Q on G : R(GQ)) ≤ RS(GQ)+√

1

n

[
KL(Q||Q̂) + ln

n + 1

δ

]}
≥ 1− δ.
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PAC-Bayesian bound on Average Classifier

Theorem (Average (Langford et al. 01))

For any distribution P, for any set G of the classifiers, any prior
distribution Q̂ of G, any δ ∈ (0, 1], and any γ > 0, we have

Pr
S∼Pn

{
∀Q on G : R(BQ) ≤ Pr

(x,y)∼S

(
y Eg∼Q [g(x)] ≤ γ

)
+ O

√γ−2KL(Q||Q̂) ln n + ln n + ln 1
δ

n

} ≥ 1− δ.

Zhu& Xing09 extended to structured output case.
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PAC-Bayesian bound on Single Classifier

Assume g(x) = 〈w , φ(x)〉 and rewrite R(g) as R(w).

Theorem (Single (McAllester07))

For any distribution P, for any set G of the classifiers, any prior
distribution Q̂ over w, any δ ∈ (0, 1], and any γ > 0, we have

Pr
S∼Pn

{
∀w ∼W : R(w) ≤ Pr

(x,y)∼S

(
y 〈w , φ(x)〉 ≤ γ

)
+ O


√
γ−2 ‖w‖

2

2 ln(n|Y |) + ln n + ln 1
δ

n

} ≥ 1− δ.
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That’s all

Good luck with the exam.
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